====== 기하분포 (Geometric Distribution) ====== ===== 표기 ===== * $$ X \sim Geo(p)$$ * $$ p \in [ \ 0 \ , \ 1 \ ] $$ ===== 받침 ===== $$ x \in \{ \ 0 \ , \ 1 \ , \ 2 \ , \ \cdots \ \} $$ ===== 확률밀도함수 ===== $$ p(x) = p \ (1-p)^{x} = p \ q^{x} $$ set title "Geometric Distribution PMF" set size 1 set yrange [0:0.9] set xrange [-0.5:15.5] set xlabel "x" set ylabel "p(x)" set format y "%.2f" f(x,p) = p*((1-p)**(int(x))) plot f(x+0.5,0.2) title "Geo(0.2)" with steps, \ f(x+0.5,0.5) title "Geo(0.5)" with steps, \ f(x+0.5,0.8) title "Geo(0.8)" with steps ===== 누적분포함수 ===== $$ F(x) = 1 - (1-p)^{x+1} = 1 - q^{x+1} $$ set title "Geometric Distribution CDF" set size 1 set yrange [0:1.1] set xrange [-0.5:15.5] set xlabel "x" set ylabel "F(x) set format y "%.2f" f(x,p) = 1-(1-p)**((int(x))+1) plot f(x+0.5,0.2) title "Geo(0.2)" with steps, \ f(x+0.5,0.5) title "Geo(0.5)" with steps, \ f(x+0.5,0.8) title "Geo(0.8)" with steps ===== 기대값 ===== $$E(X)=\frac{1-p}{p}$$ ===== 분산 ===== $$Var(X)=\frac{1-p}{p^{2}}$$ ===== 왜도 ===== $$ \gamma_{1} = \frac{2 - p}{\sqrt{1-p}} = \frac{2-p}{\sqrt{q}} $$ ===== 첨도 ===== $$ \gamma_{2} = \frac{p^{2} - 6p + 6}{1-p} = \frac{p^{2} - 6p + 6}{q} $$ ===== 특성함수 ===== $$ \phi \ (t) = \frac{p}{1 - (1 - p) \cdot e^{ \ i t}} = \frac{p}{1 - q \cdot e^{ \ i t}} $$ ===== 적률생성함수 ===== $$M(t)=\frac{p}{1-(1-p) \cdot e^{t}} = \frac{p}{1-q \cdot e^{t}}$$ ===== 원적률 ===== $$ \mu'_{1} = \frac{1-p}{p} $$ $$ \mu'_{2} = \frac{(2-p)(1-p)}{p^{2}} $$ $$ \mu'_{3} = \frac{(1-p) \left[ 6+(p-6)p \right] }{p^{3}} $$ $$ \mu'_{4} = \frac{(2-p)(1-p) \left[ 12+(p-12)p \right] }{p^{4}} $$ $$ \mu'_{k} = p \ \mathrm{Li}_{-k} (1-p) $$ * 단, $\mathrm{Li}_{n} (z)$는 ??함수(Polylogarithm)이다. ===== 중심적률 ===== $$ \mu_{2} = \frac{1-p}{p^{2}} $$ $$ \mu_{3} = \frac{(p-1)(p-2)}{p^{3}} $$ $$ \mu_{4} = \frac{(p-1)(-p^{2} +9p -9}{p^{4}} $$ $$ \mu_{k} = p \ \Phi \left( \ 1-p \ , \ -k \ , \ \frac{p-1}{p} \ \right) $$ * 단, $\Phi ( \ z \ , \ s \ , \ a \ )$ 는 ??함수(Lerch Transcendent)이다. ===== 특성 ===== * [[무기억성]]을 가진다.