====== 라플라스분포 (Laplace Distribution) ====== ===== 정의 ===== ===== 표기 ===== ===== 받침 ===== $$ x \in ( \ -\infty \ , \ \infty \ ) $$ ===== 확률밀도함수 ===== $$ f(x) = \frac{1}{2b} \exp \left[ \frac{- | \ x - \mu \ | }{b} \right] $$ set title "Laplace Distribution PDF" set size 1 set xrange [-5:5] set yrange [0:1.4] set format x "%.1f" set format y "%.2f" set xlabel "x" set ylabel "f(x)" f(x,m,b) = (1/(2*b))*exp(-(abs(x-m))/b) plot f(x,0,0.5) title "(0,1/2)", \ f(x,0,0.333) title "(0,1/3)", \ f(x,1,0.5) title "(1,1/2)" ===== 누적분포함수 ===== $$ F(x) = \frac{1}{2} \left\{ 1 + sgn (x - \mu) \left( 1 - \exp \left[ \frac{- | \ x - \mu \ | }{b} \right] \right) \right\} $$ set title "Laplace Distribution CDF" set size 1 set xrange [-5:5] set yrange [0:1.1] set format x "%.1f" set format y "%.2f" set xlabel "x" set ylabel "F(x)" set key left f(x,m,b) = (0.5)*(1+(sgn(x-m))*(1-exp(-(abs(x-m))/b))) plot f(x,0,0.5) title "(0,1/2)", \ f(x,0,0.333) title "(0,1/3)", \ f(x,1,0.5) title "(1,1/2)" ===== 기대값 ===== $$ E(X) = \mu $$ ===== 분산 ===== $$ Var(X) = 2 b^{2} $$ ===== 왜도 ===== $$ \gamma_{1} = 0 $$ ===== 첨도 ===== $$ \gamma_{2} = 3 $$ ===== 특성함수 ===== $$ \phi \ (t) = \frac{e^{i \mu t}}{1 + b^{2} t^{2}} $$