====== 크래머-라오 부등식 (Cramer-Rao Ineguality) ====== ===== 정의 ===== $X_{1}, ... , X_{n}$을 [[확률밀도함수]]([[확률질량함수]]) $f(x;\theta)$를 갖는 [[모집단]]으로 부터의 [[확률표본]]이라 하고, 집합 $\{ x:f(x;\theta) > 0 \}$이 $\theta$와는 무관하며 ${\frac{d}{d \theta}} f(x;\theta)$ 가 존재한다고 하자. $\hat{\theta}$이 $\theta$의 [[불편추정량]]이면 $\hat{\theta}$ 의 [[분산]]은 다음 부등식을 만족한다. $$Var( \hat{\theta}) \geq \frac{1}{ n E \left\{ \left[ \frac{d}{d \theta} \ln f(x;\theta) \right]^{2} \right\} }$$ 여기서 우변을 [[크래머-라오 분산 하한]]이라 한다. ----