확률변수 $Y = \ln X$가 정규분포 $N(\mu, \sigma^{2})$을 따를 때 $X$는 대수정규분포를 따르고 아래와 같이 표기 한다.
$$ X \sim LN(\mu , \sigma^{2})$$
$$ x \in ( \ 0 \ , \ \infty \ ) $$
$$ f(x) = \frac{1}{\sqrt{2 \pi} \ \sigma \cdot x} \exp \left[ - \frac{(\ln x - \mu)^{2}}{2 \sigma^{2}} \right] $$
$$ F(x) = \frac{1}{2} \left[ 1 + \mathrm{erf} \left( \frac{\ln x - \mu}{\sigma \sqrt{2}} \right) \right] $$
$$ E(x) = e^{\mu + \sigma^{2}/2} $$
$$ Var(x) = e^{2 \mu + \sigma^{2}} \ (e^{\sigma^{2}} - 1}) $$
$$ \gamma_{1} = \sqrt{e^{\sigma^{2}} - 1} \left( 2 + e^{\sigma^{2}} \right) $$
$$ \gamma_{2} = e^{4 \sigma^{2}} + 2 e^{3 \sigma^{2}} + 3 e^{2 \sigma^{2}} - 6 $$
$$ \mu'_{1} = e^{\mu + \sigma^{2}/2} $$
$$ \mu'_{2} = e^{2 \mu + 2 \sigma^{2}} $$
$$ \mu'_{3} = e^{3 \mu + 9 \sigma^{2}/2} $$
$$ \mu'_{4} = e^{4 \mu + 8 \sigma^{2}} $$
$$ \mu_{2} = e^{2 \mu + \sigma^{2}} \left( e^{\sigma^{2}} - 1 \right) $$
$$ \mu_{3} = e^{3 \mu + 3 \sigma^{2}/2} \left( e^{\sigma^{2}} - 1 \right) \left( e^{\sigma^{2}} + 2 \right) $$
$$ \mu_{4} = e^{4 \mu + 2 \sigma^{2}} \left( e^{\sigma^{2}} - 1 \right) \left( e^{4 \sigma^{2}} + 2 e^{3 \sigma^{2}} + 3 e^{2 \sigma^{2}} - 3 \right) $$