$$ \frac{d}{dx}(c)=0 $$
$$ \frac{d}{dx}[cf(x)]=cf \acute \ (x) $$
$$ \frac{d}{dx}[f(x)+g(x)]=f \acute \ (x)+g \acute \ (x) $$
$$ \frac{d}{dx}[f(x)-g(x)]=f \acute \ (x)-g \acute \ (x) $$
$$ \frac{d}{dx}[f(x)g(x)]=f(x)g \acute \ (x)+g(x)f \acute \ (x) $$
$$ \frac{d}{dx}\left[ \frac{f(x)}{g(x)} \right] =\frac{g(x)f \acute \ (x)-f(x)g \acute \ (x)}{[g(x)]^{2}} $$
$$ \frac{d}{dx}f(g(x))=f \acute \ (g(x))g \acute \ (x) $$
$$ \frac{d}{dx}(x^{n})=nx^{n-1} $$