x∈{ 0 , 1 , 2 , ⋯ }
E(X)=1−pp
Var(X)=1−pp2
γ1=2−p√1−p=2−p√q
γ2=p2−6p+61−p=p2−6p+6q
ϕ (t)=p1−(1−p)⋅e it=p1−q⋅e it
M(t)=p1−(1−p)⋅et=p1−q⋅et
μ′1=1−pp
μ′2=(2−p)(1−p)p2
μ′3=(1−p)[6+(p−6)p]p3
μ′4=(2−p)(1−p)[12+(p−12)p]p4
μ′k=p Li−k(1−p)
μ2=1−pp2
μ3=(p−1)(p−2)p3
μ4=(p−1)(−p2+9p−9p4
μk=p Φ( 1−p , −k , p−1p )