yijk=μ+ai+bj+ck+(ab)ij+(ac)ik+(bc)jk+eijk
인자 B | 인자 C | 인자 A | |||
---|---|---|---|---|---|
A1 | A2 | ⋯ | Al | ||
B1 | C1 | y111 | y211 | ⋯ | yl11 |
C2 | y112 | y212 | ⋯ | yl12 | |
⋮ | ⋮ | ⋮ | ⋮ | ||
Cn | y11n | y21n | ⋯ | yl1n | |
B2 | C1 | y121 | y221 | ⋯ | yl21 |
C2 | y122 | y222 | ⋯ | yl22 | |
⋮ | ⋮ | ⋮ | ⋮ | ||
Cn | y12n | y22n | ⋯ | yl2n | |
⋮ | ⋮ | ||||
Bm | C1 | y1m1 | y2m1 | ⋯ | ylm1 |
C2 | y1m2 | y2m2 | ⋯ | ylm2 | |
⋮ | ⋮ | ⋮ | ⋮ | ||
Cn | y1mn | y2mn | ⋯ | ylmn |
AB 2원표
인자 B | 인자 A | 합계 | |||
---|---|---|---|---|---|
A1 | A2 | ⋯ | Al | ||
B1 | T11. | T21. | ⋯ | Tl1. | T.1. |
B2 | T12. | T22. | ⋯ | Tl2. | T.2. |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
Bm | T1m. | T2m. | ⋯ | Tlm. | T.m. |
합계 | T1.. | T2.. | ⋯ | Tl.. | T |
AC 2원표
인자 C | 인자 A | 합계 | |||
---|---|---|---|---|---|
A1 | A2 | ⋯ | Al | ||
C1 | T1.1 | T2.1 | ⋯ | Tl.1 | T..1 |
C2 | T1.2 | T2.2 | ⋯ | Tl.2 | T..2 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
Cn | T1.n | T2.n | ⋯ | Tl.n | T..n |
합계 | T1.. | T2.. | ⋯ | Tl.. | T |
BC 2원표
인자 C | 인자 B | 합계 | |||
---|---|---|---|---|---|
B1 | B2 | ⋯ | Bm | ||
C1 | T.11 | T.21 | ⋯ | T.m1 | T..1 |
C2 | T.12 | T.22 | ⋯ | T.m2 | T..2 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
Cn | T.1n | T.2n | ⋯ | T.mn | T..n |
합계 | T.1. | T.2. | ⋯ | T.m. | T |
Ti..=m∑j=1n∑k=1yijk | ¯yi..=Ti..mn |
T.j.=l∑i=1n∑k=1yijk | ¯y.j.=T.j.ln |
T..k=l∑i=1m∑j=1yijk | ¯y..k=T..klm |
Tij.=n∑k=1yijk | ¯yij.=Tij.n |
Ti.k=m∑j=1yijk | ¯yi.k=Ti.km |
T.jk=l∑i=1yijk | ¯y.jk=T.jkl |
T=l∑i=1m∑j=1n∑k=1yijk | ¯¯y=Tlmn=TN |
N=lmn | CT=T2lmn=T2N |
개개의 데이터 yijk와 총평균 ¯¯y의 차이는 다음과 같이 7부분으로 나뉘어진다.
\begin{displaymath}\begin{split} (y_{ijk}-\overline{\overline{y}}) &= (\overline{y}_{i..} - \overline{\overline{y}}) + (\overline{y}_{.j.} - \overline{\overline{y}}) + (\overline{y}_{..k} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{\overline{y}}) + (\overline{y}_{i.k} - \overline{y}_{i..} - \overline{y}_{..k} + \overline{\overline{y}}) + (\overline{y}_{.jk} - \overline{y}_{.j.} - \overline{y}_{..k} + \overline{\overline{y}}) \\ &+ (y_{ijk} - \overline{y}_{ij.} - \overline{y}_{i.k} - \overline{y}_{.jk} + \overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - \overline{\overline{y}}) \end{split}\end{displaymath} 양변을 제곱한 후에 모든 i, j, k에 대하여 합하면 아래의 등식을 얻을 수 있다.
\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i..} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.j.} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{..k} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.} - \overline{y}_{i..} - \overline{y}_{.j.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k} - \overline{y}_{i..} - \overline{y}_{..k} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk} - \overline{y}_{.j.} - \overline{y}_{..k} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk} - \overline{y}_{ij.} - \overline{y}_{i.k} - \overline{y}_{.jk} + \overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - \overline{\overline{y}})^{2} \end{split}\end{displaymath} 위 식에서 왼쪽 항은 총변동 ST이고, 오른쪽 항은 차례대로 A의 [[변동]], B의 [[변동]], C의 [[변동]], A, B의 [[교호작용]]의 변동, A, C의 [[교호작용]]의 변동, B, C의 [[교호작용]]의 변동, [[오차변동]]인 SA, SB, SC, SA×B, SA×C, SB×C, SE가 된다.
\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}y_{ijk}^{ \ 2} - CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{i..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i..}^{ \ 2}}{mn}-CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{.j.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j.}^{ \ 2}}{ln}-CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{..k}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k}^{ \ 2}}{lm}-CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.}-\overline{y}_{i..}-\overline{y}_{.j.}+\overline{\overline{y}})^{2} \\ &= S_{AB} - S_{A} - S_{B} \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{ij.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} \frac{T_{ij.}^{ \ 2}}{n} -CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k}-\overline{y}_{i..}-\overline{y}_{..k}+\overline{\overline{y}})^{2} \\ &= S_{AC} - S_{A} - S_{C} \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{i.k}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n} \frac{T_{i.k}^{ \ 2}}{m} -CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk}-\overline{y}_{.j.}-\overline{y}_{..k}+\overline{\overline{y}})^{2} \\ &= S_{BC} - S_{B} - S_{C} \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(\overline{y}_{.jk}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n} \frac{T_{.jk}^{ \ 2}}{l} -CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}(y_{ijk}-\overline{y}_{ij.}-\overline{y}_{i.k}-\overline{y}_{.jk}+\overline{y}_{i..}+\overline{y}_{.j.}+\overline{y}_{..k}-\overline{\overline{y}})^{2} \\ &= S_{T}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath} ===== 자유도 ===== νA=l−1 νB=m−1 νC=n−1 νA×B=νA×νB=(l−1)(m−1) νA×C=νA×νC=(l−1)(n−1) νB×C=νB×νC=(m−1)(n−1) νE=νT−(νA+νB+νC+νA×B+νA×C+νB×C)=(l−1)(m−1)(n−1) νT=lmn−1=N−1 ===== 평균제곱 ===== VA=SAνA VB=SBνB VC=SCνC VA×B=SA×BνA×B VAB=SABνAB VA×C=SA×CνA×C VAC=SACνAC VB×C=SB×CνB×C VBC=SBCνBC VE=SEνE ===== 평균제곱의 기대값 ===== E(VA)=σ 2E+mnσ 2A E(VB)=σ 2E+lnσ 2B E(VC)=σ 2E+lmσ 2C E(VA×B)=σ 2E+nσ 2A×B E(VA×C)=σ 2E+mσ 2A×C E(VB×C)=σ 2E+lσ 2A×B E(VE)=σ 2E ===== 분산분석표 ===== ^ [[요인]] ^ [[제곱합]]\\ SS ^ [[자유도]]\\ DF ^ [[평균제곱]]\\ MS ^ E(MS) ^ F0 ^ [[기각치]] ^ [[순변동]]\\ S´ ^ [[기여율]]\\ \rho |
A | S_{_{A}} | \nu_{_{A}}=l-1 | V_{_{A}}=S_{_{A}}/\nu_{_{A}} | \sigma_{_{E}}^{ \ 2}+mn \ \sigma_{_{A}}^{2} | V_{_{A}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}}) | S_{_{A}}\acute{} | S_{_{A}}\acute{}/S_{_{T}} |
B | S_{_{B}} | \nu_{_{B}}=m-1 | V_{_{B}}=S_{_{B}}/\nu_{_{B}} | \sigma_{_{E}}^{ \ 2}+ln \ \sigma_{_{B}}^{2} | V_{_{B}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}}) | S_{_{B}}\acute{} | S_{_{B}}\acute{}/S_{_{T}} |
C | S_{_{C}} | \nu_{_{C}}=n-1 | V_{_{C}}=S_{_{C}}/\nu_{_{C}} | \sigma_{_{E}}^{ \ 2}+lm \ \sigma_{_{C}}^{2} | V_{_{C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}}) | S_{_{C}}\acute{} | S_{_{C}}\acute{}/S_{_{T}} |
A \times B | S_{_{A \times B}} | \nu_{_{A \times B}}=(l-1)(m-1) | V_{_{A \times B}}=S_{_{A \times B}}/\nu_{_{A \times B}} | \sigma_{_{E}}^{ \ 2}+n \ \sigma_{_{A \times B}}^{2} | V_{_{A \times B}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}}) | S_{_{A \times B}}\acute{} | S_{_{A \times B}}\acute{}/S_{_{T}} |
A \times C | S_{_{A \times C}} | \nu_{_{A \times C}}=(l-1)(n-1) | V_{_{A \times C}}=S_{_{A \times C}}/\nu_{_{A \times C}} | \sigma_{_{E}}^{ \ 2}+m \ \sigma_{_{A \times C}}^{2} | V_{_{A \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}}) | S_{_{A \times C}}\acute{} | S_{_{A \times C}}\acute{}/S_{_{T}} |
B \times C | S_{_{B \times C}} | \nu_{_{B \times C}}=(m-1)(n-1) | V_{_{B \times C}}=S_{_{B \times C}}/\nu_{_{B \times C}} | \sigma_{_{E}}^{ \ 2}+l \ \sigma_{_{B \times C}}^{2} | V_{_{B \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}}) | S_{_{B \times C}}\acute{} | S_{_{B \times C}}\acute{}/S_{_{T}} |
E | S_{_{E}} | \nu_{_{E}}=(l-1)(m-1)(n-1) | V_{_{E}}=S_{_{E}}/\nu_{_{E}} | \sigma_{_{E}}^{ \ 2} | S_{_{E}}\acute{} | S_{_{E}}\acute{}/S_{_{T}} | ||
T | S_{_{T}} | \nu_{_{T}}=lmn-1 | S_{_{T}} | 1 |
F_{0}=\frac{V_{_{A}}}{V_{_{E}}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{A}},\nu_{_{E}})
F_{0}=\frac{V_{_{B}}}{V_{_{E}}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{B}},\nu_{_{E}})
F_{0}=\frac{V_{_{C}}}{V_{_{E}}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{C}},\nu_{_{E}})
F_{0}=\frac{V_{_{A \times B}}}{V_{E}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},\nu_{_{E}})
F_{0}=\frac{V_{_{A \times C}}}{V_{E}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},\nu_{_{E}})
F_{0}=\frac{V_{_{B \times C}}}{V_{E}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},\nu_{_{E}})
주효과인 인자 A, B, C만이 유의한 경우 교호작용들이 모두 오차항에 풀링되어 버린다.
(단, S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/\nu_{E}\acute{}이다.)
\hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i..}
i 수준에서의 모평균 \mu(A_{i})의 100(1-\alpha) \% 신뢰구간은 아래와 같다.
\hat{\mu}(A_{i})= \left( \overline{y}_{i..} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mn}} \ , \ \overline{y}_{i..} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mn}} \right)
\hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j.}
j 수준에서의 모평균 \mu(B_{j})의 100(1-\alpha) \% 신뢰구간은 아래와 같다.
\hat{\mu}(B_{j})= \left( \overline{y}_{.j.} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{ln}} \ , \ \overline{y}_{.j.} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{ln}} \right)
\hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k}
k 수준에서의 모평균 \mu(C_{k})의 100(1-\alpha) \% 신뢰구간은 아래와 같다.
\hat{\mu}(C_{k})= \left( \overline{y}_{..k} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lm}} \ , \ \overline{y}_{..k} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lm}} \right)
A 인자의 i 수준과 B 인자의 j 수준, C 인자의 k 수준에서의 모평균 \mu(A_{i}B_{j}C_{k})의 점추정값
\hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2 \overline{\overline{y}}
A 인자의 i 수준과 B 인자의 j 수준, C 인자의 k 수준에서의 모평균 \mu(A_{i}B_{j}C_{k}) 의   100(1-\alpha) \% 신뢰구간은 아래와 같다.
\hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2\overline{\overline{y}}) - t_{\alpha/2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i..} + \overline{y}_{.j.} + \overline{y}_{..k} - 2\overline{\overline{y}}) - t_{\alpha/2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)
단, n_{e}는 유효반복수이고 n_{e} = \frac{lmn}{l+m+n-2}이다.