meta data for this page
균일분포 (Uniform Distribution)
정의
표기
$$ X \sim U(a , b)$$
- $$ a \in ( \ - \infty \ , b ) $$
- $$ b \in ( a , \ \infty \ ) $$
받침
$$ x \in [ \ a \ , \ b \ ] $$
확률밀도함수
누적분포함수
기대값
$$ E(X) = \frac{a+b}{2} $$
분산
$$ Var(X) = \frac{(b-a)^{2}}{12} $$
왜도
$$ \gamma_{1} = 0 $$
첨도
$$ \gamma_{2} = - \frac{6}{5} $$
특성함수
$$ \phi \ (t) = \frac{2}{(b - a) t} \sin \left[ \frac{1}{2} (b-a) t \right] e^{i(a+b)t/2} $$
만약, $a=0 , b=1$일 경우 특성함수는 아래와 같다.
$$ \phi \ (t) = \frac{i - i \cos t + \sin t}{t} $$
적률생성함수
$$ M(t) = \frac{e^{tb}-e^{ta}}{t(b-a)} $$
원적률
$$ \mu'_{1} = \frac{1}{2} (a+b) $$
$$ \mu'_{2} = \frac{1}{3} (a^{2} + ab + b^{2}) $$
$$ \mu'_{3} = \frac{1}{4} (a+b)(a^{2} + b^{2}) $$
$$ \mu'_{4} = \frac{1}{5} (a^{4} + a^{3} b + a^{2} b^{2} + a b^{3} + b^{4}) $$
$$ \mu'_{k} = \frac{b^{k+1} - a^{k+1}}{(k+1)(b-a)} $$
중심적률
$$ \mu_{1} = 0 $$
$$ \mu_{2} = \frac{1}{12} (b-a)^{2} $$
$$ \mu_{3} = 0 $$
$$ \mu_{4} = \frac{1}{80} (b-a)^{4} $$
$$ \mu_{k} = \frac{(a-b)^{k} + (b-a)^{k}}{2^{k+1} (k+1)} $$