meta data for this page
미분공식
General Formulas
- $$ \frac{d}{dx}(c)=0 $$
- $$ \frac{d}{dx}[cf(x)]=cf \acute \ (x) $$
- $$ \frac{d}{dx}[f(x)+g(x)]=f \acute \ (x)+g \acute \ (x) $$
- $$ \frac{d}{dx}[f(x)-g(x)]=f \acute \ (x)-g \acute \ (x) $$
- $$ \frac{d}{dx}[f(x)g(x)]=f(x)g \acute \ (x)+g(x)f \acute \ (x) $$
- $$ \frac{d}{dx}\left[ \frac{f(x)}{g(x)} \right] =\frac{g(x)f \acute \ (x)-f(x)g \acute \ (x)}{[g(x)]^{2}} $$
- $$ \frac{d}{dx}f(g(x))=f \acute \ (g(x))g \acute \ (x) $$
- $$ \frac{d}{dx}(x^{n})=nx^{n-1} $$
Exponential And Logarithmic Functions
- $$ \frac{d}{dx}(e^{x})=e^{x} $$
- $$ \frac{d}{dx}(a^{x})=a^{x}ln \ a $$
- $$ \frac{d}{dx}ln|x|=\frac{1}{x} $$
- $$ \frac{d}{dx}(log_{a}x)=\frac{1}{x \ ln \ a} $$
Trigonometric Functions
- $$ \frac{d}{dx}(sin \ x)=cos \ x $$
- $$ \frac{d}{dx}(cos \ x)=-sin \ x $$
- $$ \frac{d}{dx}(tan \ x)=sec^{2} \ x $$
- $$ \frac{d}{dx}(csc \ x)=-csc \ x \ cot \ x $$
- $$ \frac{d}{dx}(sec \ x)=sec \ x \ tan \ x $$
- $$ \frac{d}{dx}(cot \ x)=-csc^{2} \ x $$
Inverse Trigonometric Functions
- $$ \frac{d}{dx}(sin^{-1} \ x)=\frac{1}{\sqrt{1-x^{2}}} $$
- $$ \frac{d}{dx}(cos^{-1} \ x)=-\frac{1}{\sqrt{1-x^{2}}} $$
- $$ \frac{d}{dx}(tan^{-1} \ x)=\frac{1}{1+x^{2}} $$
- $$ \frac{d}{dx}(csc^{-1} \ x)=-\frac{1}{x \sqrt{x^{2}-1}} $$
- $$ \frac{d}{dx}(sec^{-1} \ x)=\frac{1}{x \sqrt{x^{2}-1}} $$
- $$ \frac{d}{dx}(cot^{-1} \ x)=-\frac{1}{1+x^{2}} $$
Hyperbolic Functions
- $$ \frac{d}{dx}(sinh \ x)=cosh \ x $$
- $$ \frac{d}{dx}(cosh \ x)=sinh \ x $$
- $$ \frac{d}{dx}(tanh \ x)=sech^{2} \ x $$
- $$ \frac{d}{dx}(csch \ x)=-csch \ x \ coth \ x $$
- $$ \frac{d}{dx}(sech \ x)=-sech \ x \ tanh \ x $$
- $$ \frac{d}{dx}(coth \ x)=-csch^{2} \ x $$
Inverse Hyperbolic Functions
- $$ \frac{d}{dx}(sinh^{-1} \ x)=\frac{1}{\sqrt{1+x^{2}}} $$
- $$ \frac{d}{dx}(cosh^{-1} \ x)=\frac{1}{\sqrt{x^{2}-1}} $$
- $$ \frac{d}{dx}(tanh^{-1} \ x)=\frac{1}{1-x^{2}} $$
- $$ \frac{d}{dx}(csch^{-1} \ x)=-\frac{1}{|x| \ \sqrt{x^{2}+1}} $$
- $$ \frac{d}{dx}(sech^{-1} \ x)=-\frac{1}{x\sqrt{1-x^{2}}} $$
- $$ \frac{d}{dx}(coth^{-1} \ x)=\frac{1}{1-x^{2}} $$