meta data for this page
문서의 이전 판입니다!
삼원배치법 (모수모형) (반복있음)
데이터 구조
yijkp=μ+ai+bj+ck+(ab)ij+(ac)ik+(bc)jk+(abc)ijk+eijkp
- μ : 실험전체의 모평균
- ai : Ai가 주는 효과
- bj : Bj가 주는 효과
- ck : Ck가 주는 효과
자료의 구조
||<|2> [인자] B ||<|2> [인자] C |||||||| [인자] A || || A1 || A2 || ⋯ || Al || |||||||||||| || ||<|10> B1 ||<|3> C1 || y1111 || y2111 || ⋯ || yl111 || || ⋮ || ⋮ || ⋮ || ⋮ || || y111r || y211r || ⋯ || yl11r || ||<|3> C2 || y1121 || y2121 || ⋯ || yl121 || || ⋮ || ⋮ || ⋮ || ⋮ || || y112r || y212r || ⋯ || yl12r || || ⋮ || ⋮ || ⋮ || || ⋮ || ||<|3> Cn || y11n1 || y21n1 || ⋯ || yl1n1 || || ⋮ || ⋮ || ⋮ || ⋮ || || y11nr || y21nr || ⋯ || yl1nr || ||<|10> B2 ||<|3> C1 || y1211 || y2211 || ⋯ || yl211 || || ⋮ || ⋮ || ⋮ || ⋮ || || y121r || y221r || ⋯ || yl21r || ||<|3> C2 || y1221 || y2221 || ⋯ || yl221 || || ⋮ || ⋮ || ⋮ || ⋮ || || y122r || y222r || ⋯ || yl22r || || ⋮ || ⋮ || ⋮ || || ⋮ || ||<|3> Cn || y12n1 || y22n1 || ⋯ || yl2n1 || || ⋮ || ⋮ || ⋮ || ⋮ || || y12nr || y22nr || ⋯ || yl2nr || |||| ⋮ |||||||| ⋮ || ||<|10> Bm ||<|3> C1 || y1m11 || y2m11 || ⋯ || ylm11 || || ⋮ || ⋮ || ⋮ || ⋮ || || y1m1r || y2m1r || ⋯ || ylm1r || ||<|3> C2 || y1m21 || y2m21 || ⋯ || ylm21 || || ⋮ || ⋮ || ⋮ || ⋮ || || y1m2r || y2m2r || ⋯ || ylm2r || || ⋮ || ⋮ || ⋮ || || ⋮ || ||<|3> Cn || y1mn1 || y2mn1 || ⋯ || ylmn1 || || ⋮ || ⋮ || ⋮ || ⋮ || || y1mnr || y2mnr || ⋯ || ylmnr ||
$$AB$$ 2원표 ||<|2> [인자] $$B$$ |||||||| [인자] $$A$$ ||<|2> 합계 || || $$A_{1}$$ || $$A_{2}$$ || $$\cdots$$ || $$A_{l}$$ || |||||||||||| || || $$B_{1}$$ || $$T_{11..}$$ || $$T_{21..}$$ || $$\cdots$$ || $$T_{l1..}$$ || $$T_{.1..}$$ || || $$B_{2}$$ || $$T_{12..}$$ || $$T_{22..}$$ || $$\cdots$$ || $$T_{l2..}$$ || $$T_{.2..}$$ || || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ || || $$B_{m}$$ || $$T_{1m..}$$ || $$T_{2m..}$$ || $$\cdots$$ || $$T_{lm..}$$ || $$T_{.m..}$$ || |||||||||||| || || 합계 || $$T_{1...}$$ || $$T_{2...}$$ || $$\cdots$$ || $$T_{l...}$$ || $$T$$ ||
$$AC$$ 2원표 ||<|2> [인자] $$C$$ |||||||| [인자] $$A$$ ||<|2> 합계 || || $$A_{1}$$ || $$A_{2}$$ || $$\cdots$$ || $$A_{l}$$ || |||||||||||| || || $$C_{1}$$ || $$T_{1.1.}$$ || $$T_{2.1.}$$ || $$\cdots$$ || $$T_{l.1.}$$ || $$T_{..1.}$$ || || $$C_{2}$$ || $$T_{1.2.}$$ || $$T_{2.2.}$$ || $$\cdots$$ || $$T_{l.2.}$$ || $$T_{..2.}$$ || || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ || || $$C_{n}$$ || $$T_{1.n.}$$ || $$T_{2.n.}$$ || $$\cdots$$ || $$T_{l.n.}$$ || $$T_{..n.}$$ || |||||||||||| || || 합계 || $$T_{1...}$$ || $$T_{2...}$$ || $$\cdots$$ || $$T_{l...}$$ || $$T$$ ||
$$BC$$ 2원표 ||<|2> [인자] $$C$$ |||||||| [인자] $$B$$ ||<|2> 합계 || || $$B_{1}$$ || $$B_{2}$$ || $$\cdots$$ || $$B_{m}$$ || |||||||||||| || || $$C_{1}$$ || $$T_{.11.}$$ || $$T_{.21.}$$ || $$\cdots$$ || $$T_{.m1.}$$ || $$T_{..1.}$$ || || $$C_{2}$$ || $$T_{.12.}$$ || $$T_{.22.}$$ || $$\cdots$$ || $$T_{.m2.}$$ || $$T_{..2.}$$ || || $$\vdots$$ || $$\vdots$$ || $$\vdots$$ || || $$\vdots$$ || $$\vdots$$ || || $$C_{n}$$ || $$T_{.1n.}$$ || $$T_{.2n.}$$ || $$\cdots$$ || $$T_{.mn.}$$ || $$T_{..n.}$$ || |||||||||||| || || 합계 || $$T_{.1..}$$ || $$T_{.2..}$$ || $$\cdots$$ || $$T_{.m..}$$ || $$T$$ ||
|| $$T_{i...} = \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{i...} = \frac{T_{i...}}{mnr}$$ || || $$T_{.j..} = \sum_{i=1}^{l} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{.j..} = \frac{T_{.j..}}{lnr}$$ || || $$T_{..k.} = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{..k.} = \frac{T_{..k.}}{lmr}$$ || || $$T_{ij..} = \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{ij..} = \frac{T_{ij..}}{nr}$$ || || $$T_{i.k.} = \sum_{j=1}^{m} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{i.k.} = \frac{T_{i.k.}}{mr}$$ || || $$T_{.jk.} = \sum_{i=1}^{l} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{.jk.} = \frac{T_{.jk.}}{lr}$$ || || $$T_{ijk.} = \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{y}_{ijk.} = \frac{T_{ijk.}}{r}$$ || || $$T = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \sum_{p=1}^{r} y_{ijkp}$$ || $$\overline{\overline{y}} = \frac{T}{lmnr} = \frac{T}{N}$$ || || $$N = lmnr$$ || $$CT = \frac{T^{2}}{lmnr} = \frac{T^{2}}{N}$$ ||
—-
제곱합
개개의 데이터 yijkp와 총평균 ¯¯y의 차이는 다음과 같이 8부분으로 나뉘어진다.
\begin{displaymath}\begin{split} (y_{ijkp}-\overline{\overline{y}}) &= (\overline{y}_{i...} - \overline{\overline{y}}) + (\overline{y}_{.j..} - \overline{\overline{y}}) + (\overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}}) + (\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}}) + (\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}}) \\ &+ (y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}}) \\ &+ (y_{ijkp}-\overline{y}_{ijk.}) \end{split}\end{displaymath} 양변을 제곱한 후에 모든 i, j, k, p에 대하여 합하면 아래의 등식을 얻을 수 있다.
\begin{displaymath}\begin{split} \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i...} - \overline{\overline{y}})^{2} + \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.j..} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..} - \overline{y}_{i...} - \overline{y}_{.j..} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.} - \overline{y}_{i...} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.} - \overline{y}_{.j..} - \overline{y}_{..k.} + \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{\overline{y}})^{2} \\ &+ \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{y}_{ijk.})^{2} \end{split}\end{displaymath} 위 식에서 왼쪽 항은 총변동 ST이고, 오른쪽 항은 차례대로 A의 [[변동]], B의 [[변동]], C의 [[변동]], A, B의 [[교호작용]]의 변동, A, C의 [[교호작용]]의 변동, B, C의 [[교호작용]]의 [[변동]], A, B, C의 [[교호작용]]의 변동, [[오차변동]]인 SA, SB, SC, SA×B, SA×C, SB×C, SA×B×C, SE가 된다.
\begin{displaymath}\begin{split} S_{T} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}y_{ijkp}^{ \ 2} - CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{A} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{i...}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\frac{T_{i...}^{ \ 2}}{mnr}-CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{.j..}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\frac{T_{.j..}^{ \ 2}}{lnr}-CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{..k.}-\overline{\overline{y}})^{2} \\ &= \sum_{k=1}^{n}\frac{T_{..k.}^{ \ 2}}{lmr}-CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{A \times B} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{.j..}+\overline{\overline{y}})^{2} \\ &= S_{AB} - S_{A} - S_{B} \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{AB} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{ij..}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m} \frac{T_{ij..}^{ \ 2}}{nr} -CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{A \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{AC} - S_{A} - S_{C} \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{AC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{i.k.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{k=1}^{n} \frac{T_{i.k.}^{ \ 2}}{mr} -CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{\overline{y}})^{2} \\ &= S_{BC} - S_{B} - S_{C} \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{BC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(\overline{y}_{.jk.}-\overline{\overline{y}})^{2} \\ &= \sum_{j=1}^{m}\sum_{k=1}^{n} \frac{T_{.jk.}^{ \ 2}}{lr} -CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{A \times B \times C} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{y}_{ij..}-\overline{y}_{i.k.}-\overline{y}_{.jk.}+\overline{y}_{i...}+\overline{y}_{.j..}+\overline{y}_{..k.}-\overline{\overline{y}})^{2} \\ &= S_{ABC}-(S_{A}+S_{B}+S_{C}+S_{A \times B}+S_{A \times C}+S_{B \times C}) \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{ABC} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijk.}-\overline{\overline{y}})^{2} \\ &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{T_{ijk.}^{ \ 2}}{r} -CT \end{split}\end{displaymath} \begin{displaymath}\begin{split} S_{E} &= \sum_{i=1}^{l}\sum_{j=1}^{m}\sum_{k=1}^{n}\sum_{p=1}^{r}(y_{ijkp}-\overline{\overline{y}})^{2} \\ &= S_{T} - S_{ABC} \end{split}\end{displaymath} ===== 자유도 ===== νA=l−1 νB=m−1 νC=n−1 νA×B=νA×νB=(l−1)(m−1) νA×C=νA×νC=(l−1)(n−1) νB×C=νB×νC=(m−1)(n−1) νA×B×C=νA×νB×νC=(l−1)(m−1)(n−1) νE=νT−(νA+νB+νC+νA×B+νA×C+νB×C+νA×B×C)=lmn(r−1) νT=lmnr−1=N−1 ===== 평균제곱 ===== VA=SAνA VB=SBνB VC=SCνC VA×B=SA×BνA×B VA×C=SA×CνA×C VB×C=SB×CνB×C VA×B×C=SA×B×CνA×B×C VE=SEνE ===== 평균제곱의 기대값 ===== E(VA)=σ 2E+mnrσ 2A E(VB)=σ 2E+lnrσ 2B E(VC)=σ 2E+lmrσ 2C E(VA×B)=σ 2E+nrσ 2A×B E(VA×C)=σ 2E+mrσ 2A×C E(VB×C)=σ 2E+lrσ 2A×B E(VA×B×C)=σ 2E+rσ 2A×B×C E(VE)=σ 2E ===== 분산분석표 ===== ^ [[요인]] ^ [[제곱합]]\\ SS ^ [[자유도]]\\ DF ^ [[평균제곱]]\\ MS ^ E(MS) ^ F0 ^ [[기각치]] ^ [[순변동]]\\ S´ ^ [[기여율]]\\ \rho |
A | S_{_{A}} | \nu_{_{A}}=l-1 | V_{_{A}}=S_{_{A}}/\nu_{_{A}} | \sigma_{_{E}}^{ \ 2}+mnr \ \sigma_{_{A}}^{2} | V_{_{A}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A}} \ , \ \nu_{_{E}}) | S_{_{A}}\acute{} | S_{_{A}}\acute{}/S_{_{T}} |
B | S_{_{B}} | \nu_{_{B}}=m-1 | V_{_{B}}=S_{_{B}}/\nu_{_{B}} | \sigma_{_{E}}^{ \ 2}+lnr \ \sigma_{_{B}}^{2} | V_{_{B}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{B}} \ , \ \nu_{_{E}}) | S_{_{B}}\acute{} | S_{_{B}}\acute{}/S_{_{T}} |
C | S_{_{C}} | \nu_{_{C}}=n-1 | V_{_{C}}=S_{_{C}}/\nu_{_{C}} | \sigma_{_{E}}^{ \ 2}+lmr \ \sigma_{_{C}}^{2} | V_{_{C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{C}} \ , \ \nu_{_{E}}) | S_{_{C}}\acute{} | S_{_{C}}\acute{}/S_{_{T}} |
A \times B | S_{_{A \times B}} | \nu_{_{A \times B}}=(l-1)(m-1) | V_{_{A \times B}}=S_{_{A \times B}}/\nu_{_{A \times B}} | \sigma_{_{E}}^{ \ 2}+nr \ \sigma_{_{A \times B}}^{2} | V_{_{A \times B}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times B}} \ , \ \nu_{_{E}}) | S_{_{A \times B}}\acute{} | S_{_{A \times B}}\acute{}/S_{_{T}} |
A \times C | S_{_{A \times C}} | \nu_{_{A \times C}}=(l-1)(n-1) | V_{_{A \times C}}=S_{_{A \times C}}/\nu_{_{A \times C}} | \sigma_{_{E}}^{ \ 2}+mr \ \sigma_{_{A \times C}}^{2} | V_{_{A \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times C}} \ , \ \nu_{_{E}}) | S_{_{A \times C}}\acute{} | S_{_{A \times C}}\acute{}/S_{_{T}} |
B \times C | S_{_{B \times C}} | \nu_{_{B \times C}}=(m-1)(n-1) | V_{_{B \times C}}=S_{_{B \times C}}/\nu_{_{B \times C}} | \sigma_{_{E}}^{ \ 2}+lr \ \sigma_{_{B \times C}}^{2} | V_{_{B \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{B \times C}} \ , \ \nu_{_{E}}) | S_{_{B \times C}}\acute{} | S_{_{B \times C}}\acute{}/S_{_{T}} |
A \times B \times C | S_{_{A \times B \times C}} | \nu_{_{A \times B \times C}}=(l-1)(m-1)(n-1) | V_{_{A \times B \times C}}=S_{_{A \times B \times C}}/\nu_{_{A \times B \times C}} | \sigma_{_{E}}^{ \ 2}+r \ \sigma_{_{A \times B \times C}}^{ \ 2} | V_{_{A \times B \times C}}/V_{_{E}} | F_{1-\alpha}(\nu_{_{A \times B \times C}} \ , \ \nu_{_{E}}) | S_{_{A \times B \times C}}\acute{} | S_{_{A \times B \times C}}\acute{}/S_{_{T}} |
E | S_{_{E}} | \nu_{_{E}}=lmn(r-1) | V_{_{E}}=S_{_{E}}/\nu_{_{E}} | \sigma_{_{E}}^{ \ 2} | S_{_{E}}\acute{} | S_{_{E}}\acute{}/S_{_{T}} | ||
T | S_{_{T}} | \nu_{_{T}}=lmnr-1 | S_{_{T}} | 1 |
분산분석
- F_{0}=\frac{V_{_{A}}}{V_{_{E}}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{A}},\nu_{_{E}})
- F_{0}=\frac{V_{_{B}}}{V_{_{E}}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{B}},\nu_{_{E}})
- F_{0}=\frac{V_{_{C}}}{V_{_{E}}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{C}},\nu_{_{E}})
- F_{0}=\frac{V_{_{A \times B}}}{V_{E}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{A \times B}},\nu_{_{E}})
- F_{0}=\frac{V_{_{A \times C}}}{V_{E}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{A \times C}},\nu_{_{E}})
- F_{0}=\frac{V_{B \times C}}{V_{E}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{_{B \times C}},\nu_{_{E}})
인자 A , \ B , \ C의 교호작용에 대한 분산분석
- F_{0}=\frac{V_{A \times B \times C}}{V_{E}}}
기각역 : F_{0} > F_{1-\alpha}(\nu_{A \times B \times C},\nu_{_{E}})
각 수준의 모평균의 추정 (주효과만이 유의한 경우)
주효과인 인자 A, B, C만이 유의한 경우 교호작용들이 모두 오차항에 풀링되어 버린다.
(단, S_{E}\acute{}=S_{E}+S_{A \times B}+S_{A \times C}+S_{B \times C}+S_{A \times B \times C}, \ \nu_{E}\acute{}=\nu_{E}+\nu_{A \times B}+\nu_{A \times C}+\nu_{B \times C}+\nu_{A \times B \times C}, \ V_{E}\acute{}=S_{E}\acute{}/\nu_{E}\acute{}이다.)
- \hat{\mu}(A_{i})=\widehat{\mu + a_{i}} = \overline{y}_{i...}
i 수준에서의 모평균 \mu(A_{i})의 100(1-\alpha) \% 신뢰구간은 아래와 같다.
- \hat{\mu}(A_{i})= \left( \overline{y}_{i...} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \ , \ \overline{y}_{i...} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{mnr}} \right)
- \hat{\mu}(B_{j})=\widehat{\mu + b_{j}} = \overline{y}_{.j..}
j 수준에서의 모평균 \mu(B_{j})의 100(1-\alpha) \% 신뢰구간은 아래와 같다.
- \hat{\mu}(B_{j})= \left( \overline{y}_{.j..} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \ , \ \overline{y}_{.j..} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lnr}} \right)
- \hat{\mu}(C_{k})=\widehat{\mu + c_{k}} = \overline{y}_{..k.}
k 수준에서의 모평균 \mu(C_{k})의 100(1-\alpha) \% 신뢰구간은 아래와 같다.
- \hat{\mu}(C_{k})= \left( \overline{y}_{..k.} - t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \ , \ \overline{y}_{..k.} + t_{\alpha/2}(\nu_{E}\acute{} \ ) \sqrt{\frac{V_{E}\acute{}}{lmr}} \right)
A 인자의 i 수준과 B 인자의 j 수준, C 인자의 k 수준에서의 모평균 \mu(A_{i}B_{j}C_{k})의 점추정값
- \hat{\mu}(A_{i}B_{j}C_{k})=\widehat{\mu+a_{i}+b_{j}+c_{k}}=\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2 \overline{\overline{y}}
A 인자의 i 수준과 B 인자의 j 수준, C 인자의 k 수준에서의 모평균 \mu(A_{i}B_{j}C_{k})의 100(1-\alpha) \% 신뢰구간은 아래와 같다.
- \hat{\mu}(A_{i}B_{j}C_{k})= \left( (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \ , \ (\overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - 2\overline{\overline{y}}) - t_{\alpha/2}(\nu_{E}\acute{} \ )\sqrt{\frac{V_{E}\acute{}}{n_{e}}} \right)
단, n_{e}는 유효반복수이고 n_{e} = \frac{lmnr}{l+m+n-2}이다.