meta data for this page
  •  

MTBF(지수분포) 구간 추정의 계수표(정수중단)

고장수 $r$ 60% 80% 90% 95%
1 4.481 0.621 9.491 0.434 19.496 0.334 39.498 0.271
2 2.426 0.668 3.761 0.514 5.628 0.422 8.257 0.359
3 1.954 0.701 2.722 0.564 3.669 0.477 4.849 0.415
4 1.742 0.725 2.293 0.599 2.928 0.516 3.670 0.456
5 1.618 0.744 2.055 0.626 2.538 0.546 3.080 0.488
6 1.537 0.759 1.904 0.647 2.296 0.571 2.725 0.514
7 1.479 0.771 1.797 0.665 2.131 0.591 2.487 0.536
8 1.435 0.782 1.718 0.680 2.010 0.608 2.316 0.555
9 1.400 0.791 1.657 0.693 1.917 0.623 2.187 0.571
10 1.372 0.799 1.607 0.704 1.843 0.637 2.085 0.585
11 1.349 0.806 1.567 0.714 1.783 0.649 2.003 0.598
12 1.329 0.812 1.533 0.723 1.733 0.659 1.935 0.610
13 1.312 0.818 1.504 0.731 1.691 0.669 1.878 0.620
14 1.297 0.823 1.478 0.738 1.654 0.677 1.829 0.630
15 1.284 0.828 1.456 0.745 1.622 0.685 1.787 0.639
16 1.272 0.832 1.437 0.751 1.594 0.693 1.750 0.647
17 1.262 0.836 1.419 0.757 1.569 0.700 1.717 0.654
18 1.253 0.840 1.404 0.763 1.547 0.706 1.687 0.661
19 1.244 0.843 1.390 0.767 1.527 0.712 1.661 0.668
20 1.237 0.846 1.377 0.772 1.509 0.717 1.637 0.674
21 1.230 0.849 1.365 0.776 1.492 0.723 1.615 0.680
22 1.223 0.852 1.354 0.781 1.477 0.728 1.596 0.685
23 1.217 0.855 1.344 0.784 1.463 0.732 1.578 0.691
24 1.211 0.857 1.335 0.788 1.450 0.737 1.561 0.695
25 1.206 0.860 1.327 0.792 1.438 0.741 1.545 0.700
26 1.201 0.862 1.319 0.795 1.427 0.745 1.531 0.705
27 1.197 0.864 1.311 0.798 1.417 0.748 1.517 0.709
28 1.193 0.866 1.304 0.801 1.407 0.752 1.505 0.713
29 1.189 0.868 1.298 0.804 1.398 0.755 1.493 0.717
30 1.185 0.870 1.291 0.806 1.389 0.759 1.482 0.720
40 1.156 0.885 1.245 0.828 1.325 0.785 1.400 0.750
50 1.137 0.896 1.214 0.844 1.283 0.804 1.347 0.772
60 1.124 0.904 1.193 0.856 1.254 0.819 1.310 0.788
70 1.113 0.910 1.176 0.865 1.232 0.830 1.283 0.802
80 1.105 0.915 1.163 0.873 1.214 0.840 1.261 0.813
90 1.098 0.920 1.153 0.879 1.200 0.848 1.244 0.822
100 1.093 0.923 1.144 0.885 1.189 0.855 1.229 0.830

(주) 상하한을 구하기 위해 [MTBF]에 곱해야 할 계수는

  • $$ \left( \frac{2r}{\chi^{2}_{1-\alpha/2} (2r)} , \frac{2r}{\chi^{2}_{\alpha/2} (2r)} \right) $$

로 하여 산출