$\alpha$ : 모양 매개변수
$\beta$ : 크기 매개변수
$$ X \sim G(\alpha , \beta)$$
$$ x \in [ \ 0 \ , \ \infty \ ) $$
$$ f(x) = \left[ \frac{1}{\Gamma(\alpha) \cdot \beta^\alpha} \right] \cdot x^{\alpha-1} \cdot e^{-x/\beta} $$
$$ F(x) = P \left( \ \alpha \ , \ \frac{x}{\beta} \ \right) $$
단, $P \left( \ a \ , \ b \ \right)$는 정칙 감마함수이다.
$$ E(X) = \alpha \beta $$
$$ Mo = (\alpha - 1) \beta $$
$$ Var(X) = \alpha \beta^{2} $$
$$ \gamma_{1} = \frac{2}{\sqrt{\alpha}} $$
$$ \gamma_{2} = \frac{6}{\alpha} $$
$$ \phi \ (t) = (1-\beta \cdot i \cdot t)^{-\alpha} $$
$$ M(t) = (1-\beta \cdot t)^{-\alpha} $$